Construction of a recombinase-deficient mutant recA protein that retains single-stranded DNA-dependent ATPase activity.
نویسنده
چکیده
The recA1 mutation is a single point mutation that replaces glycine 160 of the recA polypeptide with an aspartic acid residue. The mutant recA1 protein has a greatly reduced single-stranded DNA-dependent ATPase activity at pH 7.5 compared to the wild-type protein. Interestingly, the recA1 protein does exhibit a vigorous ATPase activity at pH 6.2. To explore the molecular basis of this pH effect, we used site-directed mutagenesis to replace aspartic acid 160 of the recA1 polypeptide with an isosteric, but nonionizing, asparagine residue. The new [Asn160]recA protein catalyzes ATP hydrolysis at pH 7.5 with the same turnover number as the wild-type protein. This result suggests that the activation of the recA1 protein ATPase activity that occurs at pH 6.2 may be due, in part, to neutralization of the negatively charged aspartic acid 160 side chain. Although it is an active single-stranded DNA-dependent ATPase, the [Asn160]recA protein is unable to complement a recA deletion in vivo and is unable to carry out the three-strand exchange reaction in vitro. Further examination of ATP hydrolysis (under strand exchange conditions) revealed that the ATPase activity of the [Asn160]recA protein is strongly suppressed in the presence of Escherichia coli single-stranded DNA-binding protein (a component of the strand exchange assay), whereas the ATPase activity of the wild-type recA protein is stimulated by the E. coli protein. To account for these results, we speculate that ATP may induce specific conformational changes in the wild-type recA protein that are essential to the DNA pairing process and that these conformational changes may not occur with the [Asn160]recA protein.
منابع مشابه
Activation of a recombinase-deficient mutant recA protein with alternate nucleoside triphosphate cofactors.
We recently described two mutant recA proteins, (G160N)recA and (H163A)recA, which have full single-stranded DNA-dependent ATP hydrolysis activity but which are unable to promote the ATP-dependent strand exchange reaction under standard reaction conditions (pH 7.5). These mutant proteins, however, are able to promote strand exchange at pH 6.0 to 6.8. Here we show that this activation correlates...
متن کاملDNA polymerase V activity is autoregulated by a novel intrinsic DNA-dependent ATPase
Escherichia coli DNA polymerase V (pol V), a heterotrimeric complex composed of UmuD'2C, is marginally active. ATP and RecA play essential roles in the activation of pol V for DNA synthesis including translesion synthesis (TLS). We have established three features of the roles of ATP and RecA. (1) RecA-activated DNA polymerase V (pol V Mut), is a DNA-dependent ATPase; (2) bound ATP is required f...
متن کاملRecA-mediated SOS induction requires an extended filament conformation but no ATP hydrolysis.
The Escherichia coli SOS response to DNA damage is modulated by the RecA protein, a recombinase that forms an extended filament on single-stranded DNA and hydrolyzes ATP. The RecA K72R (recA2201) mutation eliminates the ATPase activity of RecA protein. The mutation also limits the capacity of RecA to form long filaments in the presence of ATP. Strains with this mutation do not undergo SOS induc...
متن کاملRad51 and RecA juxtapose dsDNA ends ready for DNA ligase-catalyzed end-joining under recombinase-suppressive conditions
RecA-family recombinase-catalyzed ATP-dependent homologous joint formation is critical for homologous recombination, in which RecA or Rad51 binds first to single-stranded (ss)DNA and then interacts with double-stranded (ds)DNA. However, when RecA or Rad51 interacts with dsDNA before binding to ssDNA, the homologous joint-forming activity of RecA or Rad51 is quickly suppressed. We found that und...
متن کاملATP-independent renaturation of complementary DNA strands by the mutant recA1 protein from Escherichia coli.
In an effort to clarify the requirement for ATP in the recA protein-promoted renaturation of complementary DNA strands, we have analyzed the mutant recA1 protein which lacks single-stranded DNA-dependent ATPase activity at pH 7.5. Like the wild type, the recA1 protein binds to single-stranded DNA with a stoichiometry of one monomer per approximately four nucleotides. However, unlike the wild ty...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 263 18 شماره
صفحات -
تاریخ انتشار 1988